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The formulat ion is given of a c lass  of inverse  problems which includes a number of inverse  
thermophys ica l  problems as a par t icu lar  case .  Algori thms of the solution of such problems 
a re  considered and thei r  qualitative cha rac te r i s t i c  is given. 

1. Direc t  problems (including thermophys ica l  problems)  often admit  of the following formulation:  
Given two operators  A l and A 2 act ing f rom the same Banach space U into the Banach spaces F 1 and F2, 
respect ively ,  find the element uEU sat isfying the sys tem of equations 

Aiu = [i, A~u = h, (1) 

where fi and f2 a r e  given elements f rom F 1 and F 2. 

The problem (1) is called co r r ec t l y  formulated (correct)  if: 

1) the solution E of the problem (1) exists for any fl E F I and fz E F2; 

2) it follows that u = v f rom the equalities Alu = Alv, A2u = A2v, u, v6U; 

3) inf in i tes imalvar ia t ions  of the elements  fl and f2 resul t  in infinitesimal variat ions of the solution 
u (in the appropr ia te  spaces) .  

Conditions 1)-3) a re  known to be sat isf ied if A1U = FI, A2U = F 2 and the opera tors  A 1 and A 2 a re  
l inear  and the following a pr ior i  es t imate  holds:  

llull ~ k (H Alulll § [I A~utI2), ~r U, k > O. 

The solution u of the problem (1) is evidently a function of the elements  fl and f2, i . e . ,  E =-fi(fl, f2)- 
The first  equation of (1) can be in terpre ted  as the fundamental equation and the second, as the boundary 
and (or) initial conditions. 

The element f2 = x is considered unknown in inverse  problems.  We have for a fixed element fl: 
u = u(fl, x) - u l ( x ) ,  ~ xEF2, i . e . ,  we have a mapping of the space F 2 into U. Its image does not cer ta inly 
coincide with U, and there fore ,  assigning some u EU does not always resu l t  in the determinat ion of x f rom 
the equation E 1 (x) = u. 

Complete information about the element u 1 (x) is usually redundant to the determinat ion of x. In this 
connection, the opera tor  B acting f rom U into the Banach space Y is defined in U, and the element ~ = 
Bul(x) is measured .  The opera tor  B is often the t r ace  operator  of the function uEU on manifolds of lower 
dimension (or a sys t em of functionals of u). The final formulat ion of the inverse  problem is to solve the 
operat ion equation 

Kx = .q, ( 2 )  

where the opera tor  K = BE 1 ( �9 ) acts  f rom F 2 into Y. 

We la ter  consider  that fl = 0 and the opera tors  A l and A 2 a re  l inear .  
a lso be l inear .  
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In this case the opera tor  K will 
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Example .  Let the d i rec t  p r o b l e m  consis t  of de te rmin ing  the t e m p e r a t u r e  u(z, t) of a semi - in f in i t e  
homogeneous rod .  As is known, i ts  sa t i s f i e s  the following equations:  

A l u ~  (, c)uot Oz 20~'u , ui,=0) :: [1 = (f(z, t), ~(z)), 

0 ~ z < +  co, O~<t~<T, 

A~u ~---- u l~=o = x (t), O ~ t .~ T. 

The inve r se  p r o b l e m  cons is t s  of de te rmin ing  the t e m p e r a t u r e  x(t) on the boundary of the rod z = 0. The 
opera to r  B can be defined by dif ferent  methods .  For  example ,  Bu(z, t) = u ~ ,  t), 0 < ~ < +~o or Bu(z, t) = 
u(z, T).  An L 2 type space  is often se lec ted  as the space  Y. 

The p r o b l e m  of a h i s to r i ca l  c l imate  is compr i sed  in an analogous s cheme .  

As a ru le ,  i nve r se  p rob l em s  a r e  i n c o r r e c t .  

2. Let us call  the space  F 2 = X the space  of s t a tes ,  and the space  Y the space  of appea rances  (or 
r e s p o n s e s ) .  

Equation (2) is  the  ma thema t i ca l  model  of the phys ica l  p r o c e s s  being studied and e x p r e s s e s  the 
c a u s e - r e s u l t  re la t ionship  between the des i r ed  s ta te  x and i ts  appea rance  y.  

The following p r o b l e m s  occur :  

a) e s t ima t e  the adequacy of the model  (2) by  means  of the m e a s u r e d  appea rance  ~ (it is cons idered  
that  the m e a s u r e m e n t s  a r e  r egu l a r ;  i . e . ,  c o r r e s p o n d  to  the phys ica l  p r o c e s s  being studied); 

b) indicate an app rox ima te  method of de te rmin ing  s ta tes  c lose  to  the theore t ica l ly  poss ib le  x for  an 
adequate model .  

The impor t ance  of the i r  solut ion is indubitable.  

Let  us f i r s t  examine  p r o b l e m  a). 

Following [4]~ let  Us cal l  the model  (2) consis tent  if  the se t  of admis s ib l e  s t a t e s  X = {x :1[ Kx --  ~tl <- 
6}, where  6 : I[y - -  yll < 5, is  not empty  for  all  5. Let us set /~ = inf 11Kx --  yll. We cal l  the quantity p the 

xEX 
m e a s u r e  of incompat ib i l i ty  of (2). If p << I1~11, then  the model  (2) is cal led adequate (y-adequate) .  If  # = 0, 
we then  cal l  the model  (2) compat ib le .  If an e lement  xEX exis ts  for  which IIK~ --  ~11 = ,~, then  the model  
(2) is ca l led  so lvable .  Let us note that  the model  can be compat ib le  but not solvable .  A solvable  model  
(2) is  cal led s ing le -va lued  if the e lement  x is  unique. 

It is easy  to  show that  for  the cons is tency of the model  (2) it is n e c e s s a r y  and sufficient that/~ = 0, 
i . e . ,  the model  (2) be compat ib le .  If/~ = 0, then the model (2) is e - so lvab le  in the sense  that  the se ts  Xe = 
{xEX : l t K x -  ~11 <- e}a re  not empty  for  any e > 0, i . e . ,  in this case  the model  (2) is solvable  in p rac t i ce .  

If  p = 0, V ~EY, then  by v i r tue  of the above the model  (2) is consis tent  for  any ~EY. We call  such 
a model  abso lu te ly  cons is ten t .  It is e a s y  to  p rove  that  it is  n e c e s s a r y  and sufficient  for  this that the 
c losure  of the image  QK of the ope ra to r  K coincide with Y, i . e . ,  QK = Y. The model  (2) is then solvable  
in p r ac t i ce  for  a l l  ~ E y  (see [15]). 

In connect ion with the above,  it s e e m s  reasonab le  to cons ider  absolute ly  consis tent  ma themat i ca l  
models .  

Le t  the model  (2) be  solvable .  Will it be s ing le -va lued?  Not in the gene ra l  case .  The fal lacy is 
extended that uniqueness  of the solut ion of the i nve r se  p rob l em follows f r o m  the s ing le -va luedness  of the 
d i r ec t  p rob l em.  T h e r e  is  no necess i ty  to  p rove  the inconsis tency of this s t a t ement .  The p rob l em of 
uniqueness of i nve r se  p rob l em s  is an impor tan t  a spec t  of the gene ra l  theory  of the solution of i n c o r r e c t  
p r o b l e m s .  It is analyzed mos t  comple te ly  by M. M. L a v r e n t ' e v  and his pupi ls .  

Let us set  ~ =  inftlKx --  ~11. It is easy  to show [15] that  t,~ - -  ,~1 -< 115 - -  yJ[ < 6. It hence follows 
x~X 

that  ,~ ~ ~. If ,~<< Ilyll then evidently a l so  p << I1~11 (for sma l l  6). 

A s table  evaluat ion of ,~ in conformi ty  with the definit ion is imposs ib le  for  r e a s o n s  whose explanation 
would r equ i r e  cons iderab le  space .  Let us l imit  ourse lves  to a r e f e r r a l  to  [5], where  this quest ion is r e -  
solved with a high deg ree  of r i g o r  and an effect ive a lgor i thm is p roposed  for  the evaluat ion of a p p r o x i m a -  
t ions to # which would a s s u r e  an  e s t ima te  of the adequacy of the model .  
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Let us note tha t  the  so lu t ion  of the p r o b l e m  a) is e spec i a l l y  i m p o r t a n t  fo r  the ana lys i s  of new m a t h e -  
ma t i c a l  mode l s .  

3. Let  us t u r n  t o  the  so lu t ion  of p r o b l e m  b). Let  us a s s u m e  the mode l  (2) to  be abso lu te ly  c o n s i s -  
ten t .  Since the  p r o b l e m  (2) is i n c o r r e c t ,  the  d i a m e t e r  of the  se t  .~ does  not tend to  z e r o  as  6 - -  0. Mean-  
whi le ,  this  se t  inc ludes  al l  r e a s o n a b l e  s t a t e s  x cons i s t en t  with the  m e a s u r e d  ~. It is n e c e s s a r y  to  f o r m u -  
late the  s e l e c t i o n  ru l e  for  such s t a t e s .  The  concept  of a " r e a s o n a b l e "  s ta te  has  not been  def ined,  in the 
g e n e r a l  c a s e  they  m a y  be r e a l i z a b l e  (or phys ica l ly  a ccompl i shab l e )  s t a t e s .  Needed for  t h e i r  s e l ec t i on  is 
c o n t r a c t i o n  of the d o m a i n  of a d m i s s i b l e  s t a t es  b e c a u s e  of the invo lvement  of addi t ional  a p r i o r i  c o n s t r a i n t s .  

This  can  be  a c c o m p l i s h e d  s t r u c t u r a l l y  as  fol lows.  A funct ional  ,2 (x) ~ 0, xED~2 _CX is defined on the 
p a r t  X such  tha t  ~2 (0) = 0 and 

1 
< ~ 2 ( x ~ )  _ ~ -  -q(x2), ~ / x ~ x ~ .  

A c e r t a i n  s amp le  s ta te  x* ED, 2 is chosen ,  T h e n  the funct ional  20(x) - ..2 ( x -  x*)  r e q u i r e d  can  be i n t e r -  
p r e t e d  as  a penal ty  funct ional  and the  value .,20(x) as  the penal ty  for  the dev ia t ion  of x f r o m  the  g iven  s ta te  
x * .  Natura l ly  UX R = X, where  the  se t  is XIt = {xED,2 :~20(x) -< I l l .  He re  the quanti ty B c h a r a c t e r i z e s  the 

R>0 

level  of the  penal ty .  The  funct ional  ~20(x) can  a l s o  c h a r a c t e r i z e  the complex i ty  ( smoothness ,  m a t h e m a t i -  
cal ly)  of the  s ta te  z = x - -  x * .  Then  X R is a se t  of s t a t es  not exceeding  the a d m i s s i b l e  level  tt in  c o m -  
plexi ty .  Often 2 (x) = Ilxll. 

The  fol lowing s e l e c t i o n  ru l e  b e c o m e s  c l e a r  f r o m  the above :  it is  n e c e s s a r y  to  s e l ec t  a d m i s s i b l e  
s t a t e s  for  which the  complex i ty  does  not exceed  the  complex i ty  of the p r o p o s e d  t r u e  s t a t e .  This  c an  be 
ach ieved  by d i f fe ren t  m e a n s .  We now p r e s e n t  a few of t hem.  

Method I [6]. Both  5 and tt a r e  known. If the se t  XtI,6 = X R N -N is not empty ,  then  any e l emen t  
f r o m  XIt,5 can  be t aken  as  the suppor t ing  so lu t ion  of the p r o b l e m  (2). Mathematically- the p r o b l e m  r e -  
duces  to  d e t e r m i n i n g  the c o m m o n  points  of two se t s ,  which have been  s tudied well  in the t h e o r y  of convex 
p r o g r a m m i n g .  

Method II.  Both  5 and R a r e  known. The  c o m p r o m i s e  s ta te  x R is s e l ec t ed  f r o m  the condi t ion  

6 ~ g2 
X R ~  Da : t[Kx---Ytl 2 -r - ~ -  a (x) - -  rnin. (3) 

Since 

62 ^ 6e r~2 6 e ~2 R e =  2 ~e, lJ K ~ -  ~ jl ~ + - ~  a~ (xR) -< if ~ - ~/j ' + - ~  or0 ~ _.< + ~ -  

i . e . ,  the  found s ta te  is xIt ~Xv~tl, [25. This  shows that  the Method II is c lose  to  the Method I but its r e a -  
Hza t ion  is s i m p l e r .  

A c o m m o n  d i sadvan tage  of Methods I and II is the n e c e s s i t y  t o  g ive  both 6 and R s imu l t aneous ly .  

Method III (The Res idua l  Method [7, 8]). This  cons i s t s  of se l ec t ing  that  s ta te  x 6 a m o n g  the a d m i s -  
s ib le  s t a t e s  which p o s s e s s  m i n i m a l  complex i ty ,  i . e . ,  

x~ E Da : ~?0 (x) - -  rain. (4) 

Evident ly  IlKx 6 - -  ~11 -< 5, a0(x 6) -< a20(~ ) -< It, i . e . ,  x6EXR, 6. Knowledge of tt is not n e c e s s a r y  to  the r e a -  
l i za t ion  of (4). 

Method IV (The @uasisolut ion Method [9]). Let us g ive  the  complex i ty  level  R and let us define the 
s ta te  x R f r o m  the condi t ion  

xREXR :IIKx - - /~p- -  min. (5) 

It is  e a s y  to  see  that  ~?0(xtl)-< I1, IlI~i1 - -  ~11-  < 6, i . e . ,  xit eXi t , 6 .  

Thus ,  Methods III and IV can  be c o n s i d e r e d  the  r e a l i z a t i o n  of the  Method I.  

Under  def in i te  condi t ions ,  the  so lu t ion  of p r o b l e m s  (6) and (7) by the  method of L a g r a n g e  mul t ip l i e r s  
r e d u c e s  t o  a p r o b l e m  of abso lu te  m i n i m i z a t i o n .  The  s e l e c t i o n  of the  L a g r a n g e  mul t ip l i e r  is a c c o m p l i s h e d  
e f fec t ive ly  on the b a s i s  of a l g o r i t h m s  d e s c r i b e d  in  [10]. A n u m b e r  of o ther  n u m e r i c a l  methods  of so lv ing  
i n c o r r e c t  p r o b l e m s  has  b e e n  examined  in  [15]. 
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4. The so-ca l led  method of t r ia l s  (adjustments) is widespread in the pract ice  of solving inverse  
problems.  The possible states x i, i = 1, 2 . . . . .  s a re  usually given. Solving the direct  problem by the 
scheme given in Sec. 1, the elements Yi = Kxi, i = 1, 2 . . . . .  s a re  determined.  P re fe rence  is given to 
that state x i for which Ilyi --  ~ [ ] -  min. 

The simplici ty of its rea l iza t ion  wins out in this approach.  But could it be considered effective? 
No, if the possible states a re  not selected f rom a previously assigned bounded class  of admiss ible  s tates .  
Here the intuition of the in te rp re te r  is usually assumed,  i . e . ,  an objective solution of the inverse problem 
becomes  impossible .  

An objective t r ia l  method on the basis  of the method of quasisolutions has been proposed in [11]. 

5. Let us examine the select ion of the functional ~ (x). If the operator  K is given inaccurate ly  (and 
this is necessa ry  for the rea l iza t ion  of any method on an electronic computer) ,  then it is easy to give an 
est imate  of the fo rm 

II/{x - - / < x  II --< v 0f ,  K) f~ (x - -  x*), 

where v (~, K) - -  0 as ~ - -  K and is independent of x, but ~2 (x) is often the norm of some derivat ive of the 
function x. It is then natural  to set ~20(x) - 32 (x -- x*). This question is elucidated more  completely in 
[12]. 

The functional is usually ~2 (x) = (Cx, x) 1/2 for a f in i te-numerical  real izat ion,  where X = (x 1, x 2 . . . . .  
x n) is the des i red  vec tor  solution and C is a posi t ive-defini te  matr ix.  

Then the Method II reduces  to solving the sys t em of equations 

5~ 
R-- u C (x ~ x*) + K r K x  = Kry. (6) 

The element x* can be in terpreted as the "mean" among the possible states which is obtained f rom direc t  
measurements ,  for example,  and the mat r ix  R2C -1 as the "corre la t ion"  mat r ix  expressing the degree of 
dependence of components of the vec tor  x (smoothness).  It is easy to see that the method II is a de te r -  
minist ic  analog of the Bayes regular iza t ion  method proposed in [13]. In this eormection let us turn  atten- 
t ion to the e r r o r  in the viewpoint of the authors of [14], who contras ted randomized schemes of the r egu la r -  
izat ion method to the de terminis t ic  schemes .  

In conclusion, let us note that the Methods I-IV possess  optimality proper t ies  in the sense of unim- 
provabil i ty of the order  of the accuracy  of the approximations they provide [15]. 
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